(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, s(z1))) → c2(S(plus(z0, z1)), PLUS(z0, z1))
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(plus(z0, s(z1))) → c2(S(plus(z0, z1)), PLUS(z0, z1))
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20
(3) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(S(plus(z0, z1)))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
S tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(S(plus(z0, z1)))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c
(5) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
S tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
K tuples:none
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c, c
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
And the Tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(ACTIVE(x1)) = 0
POL(AND(x1, x2)) = 0
POL(PLUS(x1, x2)) = 0
POL(PROPER(x1)) = 0
POL(S(x1)) = 0
POL(TOP(x1)) = [4]x1
POL(active(x1)) = x1
POL(and(x1, x2)) = [4] + x1 + x2
POL(c) = 0
POL(c(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c16(x1, x2, x3)) = x1 + x2 + x3
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c20(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [4] + x1
POL(ok(x1)) = x1
POL(plus(x1, x2)) = x1 + [2]x2
POL(proper(x1)) = x1
POL(s(x1)) = [4] + x1
POL(tt) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
S tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c, c
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
We considered the (Usable) Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
And the Tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [3]
POL(ACTIVE(x1)) = 0
POL(AND(x1, x2)) = 0
POL(PLUS(x1, x2)) = 0
POL(PROPER(x1)) = [1] + [2]x1
POL(S(x1)) = 0
POL(TOP(x1)) = [2]x12
POL(active(x1)) = x1
POL(and(x1, x2)) = [1] + [2]x1 + x2
POL(c) = 0
POL(c(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c16(x1, x2, x3)) = x1 + x2 + x3
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c20(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [2] + x1
POL(ok(x1)) = x1
POL(plus(x1, x2)) = [1] + [2]x1 + x2 + x22 + [2]x1·x2
POL(proper(x1)) = x1
POL(s(x1)) = [3] + [3]x1
POL(tt) = [1]
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
S tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c, c
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
And the Tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(ACTIVE(x1)) = 0
POL(AND(x1, x2)) = 0
POL(PLUS(x1, x2)) = 0
POL(PROPER(x1)) = x1
POL(S(x1)) = 0
POL(TOP(x1)) = [2]x12
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(c) = 0
POL(c(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c16(x1, x2, x3)) = x1 + x2 + x3
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c20(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(plus(x1, x2)) = [2]x1 + [2]x2
POL(proper(x1)) = x1
POL(s(x1)) = [1] + x1
POL(tt) = [1]
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
S tuples:
ACTIVE(and(z0, z1)) → c3(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c, c
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
and(
z0,
z1)) →
c3(
AND(
active(
z0),
z1),
ACTIVE(
z0)) by
ACTIVE(and(and(tt, z0), x1)) → c3(AND(mark(z0), x1), ACTIVE(and(tt, z0)))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
ACTIVE(and(and(tt, z0), x1)) → c3(AND(mark(z0), x1), ACTIVE(and(tt, z0)))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(plus(z0, s(z1))) → c
ACTIVE(and(and(tt, z0), x1)) → c3(AND(mark(z0), x1), ACTIVE(and(tt, z0)))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c, c, c3
(15) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 24 dangling nodes:
ACTIVE(plus(z0, s(z1))) → c
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(and(tt, z0), x1)) → c3(AND(mark(z0), x1), ACTIVE(and(tt, z0)))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(and(tt, z0), x1)) → c3(AND(mark(z0), x1), ACTIVE(and(tt, z0)))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c, c3
(17) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(and(and(tt, z0), x1)) → c1(ACTIVE(and(tt, z0)))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(and(and(tt, z0), x1)) → c1(ACTIVE(and(tt, z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c, c3, c1
(19) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(and(and(tt, z0), x1)) → c1
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(and(and(tt, z0), x1)) → c1
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c, c3, c1, c1
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
s(
z0)) →
c6(
S(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(s(and(tt, z0))) → c6(S(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(and(and(tt, z0), x1)) → c1
ACTIVE(s(and(tt, z0))) → c6(S(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(and(and(tt, z0), x1)) → c1
ACTIVE(s(and(tt, z0))) → c6(S(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c, c3, c1, c1, c6
(23) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 30 dangling nodes:
ACTIVE(and(and(tt, z0), x1)) → c1
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(and(tt, z0))) → c6(S(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(and(tt, z0))) → c6(S(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c, c3, c1, c6
(25) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
ACTIVE(s(and(tt, z0))) → c2(ACTIVE(and(tt, z0)))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
ACTIVE(s(and(tt, z0))) → c2(ACTIVE(and(tt, z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c, c3, c1, c6, c2
(27) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
ACTIVE(s(and(tt, z0))) → c2
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
ACTIVE(s(and(tt, z0))) → c2
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c14, c16, c18, c19, c20, c, c3, c1, c6, c2, c2
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
and(
z0,
z1)) →
c14(
AND(
proper(
z0),
proper(
z1)),
PROPER(
z0),
PROPER(
z1)) by
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0), PROPER(0))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(0), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
ACTIVE(s(and(tt, z0))) → c2
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0), PROPER(0))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(0), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
ACTIVE(s(and(tt, z0))) → c2
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(and(z0, z1)) → c14(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c16, c18, c19, c20, c, c3, c1, c6, c2, c2, c14
(31) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 39 dangling nodes:
ACTIVE(s(and(tt, z0))) → c2
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0), PROPER(0))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(0), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c16, c18, c19, c20, c, c3, c1, c6, c2, c14
(33) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(x1))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c16, c18, c19, c20, c, c3, c1, c6, c2, c14, c14
(35) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
plus(
z0,
z1)) →
c16(
PLUS(
proper(
z0),
proper(
z1)),
PROPER(
z0),
PROPER(
z1)) by
PROPER(plus(x0, and(z0, z1))) → c16(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, tt)) → c16(PLUS(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(plus(x0, plus(z0, z1))) → c16(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, 0)) → c16(PLUS(proper(x0), ok(0)), PROPER(x0), PROPER(0))
PROPER(plus(x0, s(z0))) → c16(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(and(z0, z1), x1)) → c16(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(tt, x1)) → c16(PLUS(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c16(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(0, x1)) → c16(PLUS(ok(0), proper(x1)), PROPER(0), PROPER(x1))
PROPER(plus(s(z0), x1)) → c16(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c16(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, tt)) → c16(PLUS(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(plus(x0, plus(z0, z1))) → c16(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, 0)) → c16(PLUS(proper(x0), ok(0)), PROPER(x0), PROPER(0))
PROPER(plus(x0, s(z0))) → c16(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(and(z0, z1), x1)) → c16(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(tt, x1)) → c16(PLUS(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c16(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(0, x1)) → c16(PLUS(ok(0), proper(x1)), PROPER(0), PROPER(x1))
PROPER(plus(s(z0), x1)) → c16(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c18, c19, c20, c, c3, c1, c6, c2, c14, c14, c16
(37) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c16(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c16(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c16(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(and(z0, z1), x1)) → c16(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c16(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c16(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x0, tt)) → c16(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c16(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c16(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c16(PLUS(ok(0), proper(x1)), PROPER(x1))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c18, c19, c20, c, c3, c1, c6, c2, c14, c14, c16, c16
(39) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
s(
z0)) →
c18(
S(
proper(
z0)),
PROPER(
z0)) by
PROPER(s(and(z0, z1))) → c18(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(tt)) → c18(S(ok(tt)), PROPER(tt))
PROPER(s(plus(z0, z1))) → c18(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(0)) → c18(S(ok(0)), PROPER(0))
PROPER(s(s(z0))) → c18(S(s(proper(z0))), PROPER(s(z0)))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c16(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c16(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c16(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(and(z0, z1), x1)) → c16(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c16(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c16(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x0, tt)) → c16(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c16(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c16(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c16(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c18(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(tt)) → c18(S(ok(tt)), PROPER(tt))
PROPER(s(plus(z0, z1))) → c18(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(0)) → c18(S(ok(0)), PROPER(0))
PROPER(s(s(z0))) → c18(S(s(proper(z0))), PROPER(s(z0)))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, TOP, PROPER
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c19, c20, c, c3, c1, c6, c2, c14, c14, c16, c16, c18
(41) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c16(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c16(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c16(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(and(z0, z1), x1)) → c16(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c16(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c16(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x0, tt)) → c16(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c16(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c16(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c16(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c18(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c18(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c18(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(tt)) → c15(S(ok(tt)))
PROPER(s(tt)) → c15(PROPER(tt))
PROPER(s(0)) → c15(S(ok(0)))
PROPER(s(0)) → c15(PROPER(0))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, TOP, PROPER
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c19, c20, c, c3, c1, c6, c2, c14, c14, c16, c16, c18, c15
(43) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c16(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c16(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c16(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(and(z0, z1), x1)) → c16(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c16(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c16(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x0, tt)) → c16(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c16(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c16(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c16(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c18(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c18(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c18(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(tt)) → c15(S(ok(tt)))
PROPER(s(0)) → c15(S(ok(0)))
PROPER(s(tt)) → c15
PROPER(s(0)) → c15
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, TOP, PROPER
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c19, c20, c, c3, c1, c6, c2, c14, c14, c16, c16, c18, c15, c15
(45) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c19(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(and(z0, z1))) → c19(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(tt)) → c19(TOP(ok(tt)), PROPER(tt))
TOP(mark(plus(z0, z1))) → c19(TOP(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
TOP(mark(0)) → c19(TOP(ok(0)), PROPER(0))
TOP(mark(s(z0))) → c19(TOP(s(proper(z0))), PROPER(s(z0)))
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c16(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c16(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c16(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(and(z0, z1), x1)) → c16(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c16(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c16(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x0, tt)) → c16(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c16(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c16(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c16(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c18(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c18(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c18(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(tt)) → c15(S(ok(tt)))
PROPER(s(0)) → c15(S(ok(0)))
PROPER(s(tt)) → c15
PROPER(s(0)) → c15
TOP(mark(and(z0, z1))) → c19(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(tt)) → c19(TOP(ok(tt)), PROPER(tt))
TOP(mark(plus(z0, z1))) → c19(TOP(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
TOP(mark(0)) → c19(TOP(ok(0)), PROPER(0))
TOP(mark(s(z0))) → c19(TOP(s(proper(z0))), PROPER(s(z0)))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c19(TOP(proper(z0)), PROPER(z0))
PROPER(plus(z0, z1)) → c16(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c18(S(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, TOP, PROPER
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c20, c, c3, c1, c6, c2, c14, c14, c16, c16, c18, c15, c15, c19
(47) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 2 of 57 dangling nodes:
PROPER(s(0)) → c15
PROPER(s(tt)) → c15
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c16(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c16(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c16(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(and(z0, z1), x1)) → c16(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c16(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c16(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x0, tt)) → c16(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c16(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c16(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c16(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c18(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c18(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c18(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(tt)) → c15(S(ok(tt)))
PROPER(s(0)) → c15(S(ok(0)))
TOP(mark(and(z0, z1))) → c19(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(tt)) → c19(TOP(ok(tt)), PROPER(tt))
TOP(mark(plus(z0, z1))) → c19(TOP(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
TOP(mark(0)) → c19(TOP(ok(0)), PROPER(0))
TOP(mark(s(z0))) → c19(TOP(s(proper(z0))), PROPER(s(z0)))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, TOP, PROPER
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c20, c, c3, c1, c6, c2, c14, c14, c16, c16, c18, c15, c19
(49) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c16(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c16(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c16(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(and(z0, z1), x1)) → c16(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c16(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c16(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x0, tt)) → c16(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c16(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c16(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c16(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c18(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c18(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c18(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(tt)) → c15(S(ok(tt)))
PROPER(s(0)) → c15(S(ok(0)))
TOP(mark(and(z0, z1))) → c19(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(plus(z0, z1))) → c19(TOP(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
TOP(mark(s(z0))) → c19(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(tt)) → c19(TOP(ok(tt)))
TOP(mark(0)) → c19(TOP(ok(0)))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(ok(z0)) → c20(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, TOP, PROPER
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c20, c, c3, c1, c6, c2, c14, c14, c16, c16, c18, c15, c19, c19
(51) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c20(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(and(tt, z0))) → c20(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(plus(z0, 0))) → c20(TOP(mark(z0)), ACTIVE(plus(z0, 0)))
TOP(ok(plus(z0, s(z1)))) → c20(TOP(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
TOP(ok(and(z0, z1))) → c20(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(plus(z0, z1))) → c20(TOP(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
TOP(ok(plus(z0, z1))) → c20(TOP(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
TOP(ok(s(z0))) → c20(TOP(s(active(z0))), ACTIVE(s(z0)))
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c16(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c16(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c16(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(and(z0, z1), x1)) → c16(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c16(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c16(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x0, tt)) → c16(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c16(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c16(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c16(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c18(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c18(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c18(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(tt)) → c15(S(ok(tt)))
PROPER(s(0)) → c15(S(ok(0)))
TOP(mark(and(z0, z1))) → c19(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(plus(z0, z1))) → c19(TOP(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
TOP(mark(s(z0))) → c19(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(tt)) → c19(TOP(ok(tt)))
TOP(mark(0)) → c19(TOP(ok(0)))
TOP(ok(and(tt, z0))) → c20(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(plus(z0, 0))) → c20(TOP(mark(z0)), ACTIVE(plus(z0, 0)))
TOP(ok(plus(z0, s(z1)))) → c20(TOP(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
TOP(ok(and(z0, z1))) → c20(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(plus(z0, z1))) → c20(TOP(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
TOP(ok(plus(z0, z1))) → c20(TOP(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
TOP(ok(s(z0))) → c20(TOP(s(active(z0))), ACTIVE(s(z0)))
S tuples:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
TOP(ok(and(tt, z0))) → c20(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(plus(z0, 0))) → c20(TOP(mark(z0)), ACTIVE(plus(z0, 0)))
TOP(ok(plus(z0, s(z1)))) → c20(TOP(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
TOP(ok(and(z0, z1))) → c20(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(plus(z0, z1))) → c20(TOP(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
TOP(ok(plus(z0, z1))) → c20(TOP(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
TOP(ok(s(z0))) → c20(TOP(s(active(z0))), ACTIVE(s(z0)))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, PROPER, TOP
Compound Symbols:
c4, c5, c7, c8, c9, c10, c11, c12, c13, c, c3, c1, c6, c2, c14, c14, c16, c16, c18, c15, c19, c19, c20
(53) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(plus(z0, z1)) → c4(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c5(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(plus(z0, s(z1))) → c(PLUS(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c3(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c3(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c3(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c3(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c3(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(and(tt, z0), x1)) → c1(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c6(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c6(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c6(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c6(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c6(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(and(tt, z0))) → c2(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c14(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c14(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c14(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(and(z0, z1), x1)) → c14(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c14(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c14(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x0, tt)) → c14(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c14(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c14(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c14(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c16(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c16(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c16(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(and(z0, z1), x1)) → c16(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c16(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c16(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x0, tt)) → c16(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c16(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c16(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c16(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c18(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c18(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c18(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(tt)) → c15(S(ok(tt)))
PROPER(s(0)) → c15(S(ok(0)))
TOP(mark(and(z0, z1))) → c19(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(plus(z0, z1))) → c19(TOP(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
TOP(mark(s(z0))) → c19(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(ok(and(tt, z0))) → c20(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(plus(z0, 0))) → c20(TOP(mark(z0)), ACTIVE(plus(z0, 0)))
TOP(ok(plus(z0, s(z1)))) → c20(TOP(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
TOP(ok(and(z0, z1))) → c20(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(plus(z0, z1))) → c20(TOP(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
TOP(ok(plus(z0, z1))) → c20(TOP(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
TOP(ok(s(z0))) → c20(TOP(s(active(z0))), ACTIVE(s(z0)))
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
TOP(mark(tt)) → c19(TOP(ok(tt)))
TOP(mark(0)) → c19(TOP(ok(0)))
S tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
AND, PLUS, S, TOP
Compound Symbols:
c7, c8, c9, c10, c11, c12, c13, c19
(55) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 2 of 9 dangling nodes:
TOP(mark(tt)) → c19(TOP(ok(tt)))
TOP(mark(0)) → c19(TOP(ok(0)))
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
S tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
AND, PLUS, S
Compound Symbols:
c7, c8, c9, c10, c11, c12, c13
(57) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = [3]x2 + [3]x22
POL(PLUS(x1, x2)) = 0
POL(S(x1)) = 0
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = 0
POL(ok(x1)) = [3] + x1
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
S tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
K tuples:
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
AND, PLUS, S
Compound Symbols:
c7, c8, c9, c10, c11, c12, c13
(59) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
AND(mark(z0), z1) → c7(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = x1 + [3]x2
POL(PLUS(x1, x2)) = x1 + [4]x2
POL(S(x1)) = 0
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [2] + x1
POL(ok(x1)) = x1
(60) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
S tuples:
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
K tuples:
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
AND, PLUS, S
Compound Symbols:
c7, c8, c9, c10, c11, c12, c13
(61) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = [4]x1 + [2]x2
POL(PLUS(x1, x2)) = [3]x1 + [3]x2
POL(S(x1)) = 0
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [4] + x1
POL(ok(x1)) = [4] + x1
(62) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
S tuples:
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
K tuples:
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
AND, PLUS, S
Compound Symbols:
c7, c8, c9, c10, c11, c12, c13
(63) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = [3]x2
POL(PLUS(x1, x2)) = [4]x2
POL(S(x1)) = 0
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [4] + x1
POL(ok(x1)) = x1
(64) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
S tuples:
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
K tuples:
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
AND, PLUS, S
Compound Symbols:
c7, c8, c9, c10, c11, c12, c13
(65) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
S(mark(z0)) → c12(S(z0))
We considered the (Usable) Rules:none
And the Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = [2]x2
POL(PLUS(x1, x2)) = [4]x2
POL(S(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(66) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
S tuples:
S(ok(z0)) → c13(S(z0))
K tuples:
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
AND, PLUS, S
Compound Symbols:
c7, c8, c9, c10, c11, c12, c13
(67) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
S(ok(z0)) → c13(S(z0))
We considered the (Usable) Rules:none
And the Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = x1 + [3]x1·x2
POL(PLUS(x1, x2)) = x22 + x12
POL(S(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [1] + x1
(68) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
AND(mark(z0), z1) → c7(AND(z0, z1))
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
S tuples:none
K tuples:
AND(ok(z0), ok(z1)) → c8(AND(z0, z1))
AND(mark(z0), z1) → c7(AND(z0, z1))
PLUS(mark(z0), z1) → c9(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c11(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c10(PLUS(z0, z1))
S(mark(z0)) → c12(S(z0))
S(ok(z0)) → c13(S(z0))
Defined Rule Symbols:
active, and, plus, s, proper, top
Defined Pair Symbols:
AND, PLUS, S
Compound Symbols:
c7, c8, c9, c10, c11, c12, c13
(69) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(70) BOUNDS(O(1), O(1))